Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals.

نویسندگان

  • R E Westenbroek
  • L Hoskins
  • W A Catterall
چکیده

Ca2+ channels in distinct subcellular compartments of neurons mediate voltage-dependent Ca2+ influx, which integrates synaptic responses, regulates gene expression, and initiates synaptic transmission. Antibodies that specifically recognize the alpha1 subunits of class A, B, C, D, and E Ca2+ channels have been used to investigate the localization of these voltage-gated ion channels on spinal motor neurons, interneurons, and nerve terminals of the adult rat. Class A P/Q-type Ca2+ channels were present mainly in a punctate pattern in nerve terminals located along the cell bodies and dendrites of motor neurons. Both smooth and punctate staining patterns were observed over the surface of the cell bodies and dendrites with antibodies to class B N-type Ca2+ channels, indicating the presence of these channels in the cell surface membrane and in nerve terminals. Class C and D L-type and class E R-type Ca2+ channels were distributed mainly over the cell soma and proximal dendrites. Class A P/Q-type Ca2+ channels were present predominantly in the presynaptic terminals of motor neurons at the neuromuscular junction. Occasional nerve terminals innervating skeletal muscles from the hindlimb were labeled with antibodies against class B N-type Ca2+ channels. Staining of the dorsal laminae of the rat spinal cord revealed a complementary distribution of class A and class B Ca2+ channels in nerve terminals in the deeper versus the superficial laminae. Many of the nerve terminals immunoreactive for class B N-type Ca2+ channels also contained substance P, an important neuropeptide in pain pathways, suggesting that N-type Ca2+ channels are predominant at synapses that carry nociceptive information into the spinal cord.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy

Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...

متن کامل

Deprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy

Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...

متن کامل

Anatomical evidence for two spinal 'afferent-interneuron-efferent' reflex pathways involved in micturition in the rat: a 'pelvic nerve' reflex pathway and a 'sacrolumbar intersegmental' reflex pathway.

We labeled interneurons in the L1-L2 and L6-S1 spinal cord segments of the rat that are involved in bladder innervation using transneuronal retrograde transport of pseudorabies virus (PRV) in normal animals and in animals with selected nerve transections. Preganglionic neurons were identified using antisera against choline acetyltransferase (ChAT). In some experiments we labelled parasympatheti...

متن کامل

Properties of axon terminals contacting intermediate zone excitatory and inhibitory premotor interneurons with monosynaptic input from group I and II muscle afferents.

The intermediate zone of the spinal grey matter contains premotor interneurons mediating reflex actions of group I and II muscle afferents. However, limited information is available on how activity of inhibitory versus excitatory interneurons in this population are modulated and how they contribute to motor networks. There were three aims of this study: (1) to characterize excitatory axonal con...

متن کامل

H-reflex down-conditioning greatly increases the number of identifiable GABAergic interneurons in rat ventral horn

H-reflex down-conditioning increases GABAergic terminals on spinal cord motoneurons. To explore the origins of these terminals, we studied the numbers and distributions of spinal cord GABAergic interneurons. The number of identifiable GABAergic interneurons in the ventral horn was 78% greater in rats in which down-conditioning was successful than in naive rats or rats in which down-conditioning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 16  شماره 

صفحات  -

تاریخ انتشار 1998